Tag Archives: machinery china

China Standard Planetary Gear Box for Metallurgy Machinery Manufactured in Shanghai car gearbox

Product Description

Features:
1. Modular design realizes variable combination.
2. Housing is made of cast iron, which improve its rigidity and anti-vibration.
3. Sun and planet gears are processed by cementite and hardening, gears are processed by grinding, which improve the efficiency and lifetime of gear units.

Product description
Installation types 1. horizontal vertical, 2. torque-arm.
Input types: coaxial input, helical gear input, bevel-helical gear input
Output types: internal involutes spline, hollow shaft with shrink disk, external involutes spline, CZPT shaft with flat key.
Speed reducing ratio: 25-4000
Transmission stage: 2 stage /3 stage

CZPT P series planetary gear box, compared with the like common gear physical box, features stable transmission, high loading capacity, small size and high drive ratio. Additionally, it has long service life which reaches 1000Y, small size, and beautiful appearance.

Characteristic advantage

1.Compact structure.
2.CZPT shaft or hollow shaft with shrink disc. 
3.Progressive spline or flange shaft design.
4.High vibration resistance. 

Specification parameter

Product type :        parallel-axes and intersecting-axes planetary gear box.
Torque output :      max torque output: 2.2 ~2,600 kNm. 

Industrial Application 
Power Plant Equipment 
Metallurgical Industry 
Metal Forming Machinery 
Petrochemical Industry 
Mining Machine 
Hoisting Machinery 
Construction Industry 
Environmental Protection Industry 
Cable Industry 
Food Machinery 

Certificates
Passed ” ISO 9001 International Quality System Certificate”,”Europe CE Certificate”, ” Swiss SGS Certificate”,”High-tech enterprise certificate of ZheJiang city”,”Excellent performance management enterprise of ZheJiang city”,etc.
FAQ 
1. Q: Can you make as per custom drawing? 
A: Yes, we offer customized service for customers. 
2. Q: Are you a factory or trading company? 
A. We are manufacturer in ZheJiang China. 
3. Q: What’s your MOQ? 
A: One piece. 
4. Q: What’s your production time? 
A: 7-15 working days after receiving payment. 
5. Q: What’s your payment terms? 
A: T/T, 30% payment in advance, 70% balance payment should be paid before shipping. 
6. Q: What’s your package? 
A: In wooden box packaging. 

ZheJiang CZPT Gear Reducer Co.,Ltd., former a joint venture invested by is a ZheJiang CZPT GROUP and Well Company of America.We are professional manufacturer of the gear reducers and specialize in the gear reducers area in China for 20 years. CZPT has excellent R&D team,top-ranking production and test equipment.So we have the strong power in the developing and manufacturing the standards type as well as the customized type gear reducer for our customers.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Function: Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Customization:
Available

|

Customized Request

planetary gearbox

Role of Planetary Gearboxes in Powertrain Systems of Electric and Hybrid Vehicles

Planetary gearboxes play a critical role in the powertrain systems of both electric and hybrid vehicles, contributing to their efficiency and performance:

Electric Motor Integration: In electric vehicles (EVs) and hybrid vehicles, planetary gearboxes are commonly used to connect the electric motor to the drivetrain. They enable torque and speed transformation, ensuring the motor’s output is suitable for the vehicle’s desired speed range and load conditions.

Torque Splitting in Hybrids: Hybrid vehicles often have both an internal combustion engine (ICE) and an electric motor. Planetary gearboxes enable torque splitting between the two power sources, optimizing their combined performance for various driving scenarios, such as electric-only mode, hybrid mode, and regenerative braking.

Regenerative Braking: Planetary gearboxes facilitate regenerative braking in electric and hybrid vehicles. They enable the electric motor to function as a generator, converting kinetic energy into electrical energy during deceleration. This energy can then be stored in the vehicle’s battery for later use.

Compact Design: Planetary gearboxes offer a compact design with a high power density, making them suitable for the limited space available in electric and hybrid vehicles. This compactness allows manufacturers to maximize interior space and accommodate battery packs, drivetrain components, and other systems.

Efficient Power Distribution: The unique arrangement of planetary gears allows for efficient power distribution and torque management. This is particularly important in electric and hybrid powertrains, where optimal power allocation between different components contributes to overall efficiency.

CVT Functionality: Some hybrid vehicles incorporate Continuously Variable Transmission (CVT) functionality using planetary gearsets. This enables seamless and efficient transitions between various gear ratios, improving the driving experience and enhancing fuel efficiency.

Performance Modes: Planetary gearboxes facilitate the implementation of different performance modes in electric and hybrid vehicles. These modes, such as “Sport” or “Eco,” adjust the power distribution and gear ratios to optimize performance or energy efficiency based on the driver’s preferences.

Reduction Gear for Electric Motors: Electric motors often operate at high speeds and require reduction gearing to match the vehicle’s requirements. Planetary gearboxes provide the necessary gear reduction while maintaining efficiency and torque output.

Efficient Torque Transfer: Planetary gearboxes ensure efficient transfer of torque from the power source to the wheels, resulting in smooth acceleration and responsive performance in electric and hybrid vehicles.

Integration with Energy Storage: Planetary gearboxes contribute to the integration of energy storage systems, such as lithium-ion batteries, by efficiently connecting the power source to the drivetrain while managing power delivery and regeneration.

In summary, planetary gearboxes are integral components of the powertrain systems in electric and hybrid vehicles. They enable efficient power distribution, torque transformation, regenerative braking, and various driving modes, contributing to the overall performance, efficiency, and sustainability of these vehicles.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

China Standard Planetary Gear Box for Metallurgy Machinery Manufactured in Shanghai   car gearbox	China Standard Planetary Gear Box for Metallurgy Machinery Manufactured in Shanghai   car gearbox
editor by CX 2023-12-22

China Best Sales Gearbox for Agricultural Machinery 540 Pto Tractor Speed Increaser High Quantity Manufacturers Suppliers Miter Bevel Rotary Mower Cutter Tiller Brush Hog Mower gearbox drive shaft

Product Description

           Gearbox for Agricultural Machinery 540 Pto Tractor Speed Increaser High quantity Manufacturers Suppliers Miter Bevel Rotary Mower Cutter Tiller Brush Hog Mower

Application of Gearbox

Gearboxes are used in a wide variety of applications, including:

  • Automotive: Gearboxes are used in automobiles to transmit power from the engine to the wheels. They also used in electric vehicles to control the speed of the electric motor.
  • Machine tools: Gearboxes are used in machine tools to transmit power from the motor to the cutting tool. This allows the cutting tool to operate at a high speed and torque, which is necessary for cutting through tough materials.
  • Wind turbines: Gearboxes are used in wind turbines to transmit power from the blades to the generator. This allows the generator to generate electricity at a controlled speed and torque, which is necessary for providing power to homes and businesses.
  • Robotics: Gearboxes are used in robotics to transmit power from the motor to the robot’s joints. This allows the robot to move its joints at a controlled speed and torque, which is necessary for performing tasks such as picking and placing objects.
  • Conveyors: Gearboxes are used in conveyors to transmit power from the motor to the conveyor belt. This allows the conveyor belt to move at a controlled speed and torque.
  • Mining: Gearboxes are used in mining equipment, such as crushers, conveyors, and pumps. The gearbox allows the equipment to move materials at a controlled speed and torque, which is necessary for mining operations.
  • Construction: Gearboxes are used in construction equipment, such as excavators, cranes, and loaders. The gearbox allows the machinery to move at a controlled speed and torque, which is necessary for construction operations.
  • Aerospace: Gearboxes are used in aerospace applications, such as jet engines and helicopters. The gearbox allows the engines to operate at a controlled speed and torque, which is necessary for flight.

Gearboxes are a vital part of many different industries. They help to improve the efficiency, productivity, and safety of a wide variety of machines and equipment.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

bevel gearbox

Minimizing Backlash and Ensuring Efficient Power Transfer in Bevel Gearboxes

Bevel gearboxes are meticulously designed to minimize backlash and optimize power transfer efficiency, ensuring smooth and precise motion in mechanical systems.

Several design considerations contribute to minimizing backlash and enhancing power transfer:

  • Tooth Profile and Quality: High-precision tooth profiles with minimal clearance between mating gears reduce backlash. The use of advanced manufacturing techniques ensures consistent gear quality and accurate tooth engagement.
  • Preload and Contact Pattern: Properly applied preload and optimized contact patterns between the bevel gear teeth enhance meshing accuracy, reducing the potential for backlash and improving load distribution.
  • Gearbox Rigidity: Stiff and rigid gearbox housing and components help maintain precise gear alignment, reducing the effects of deflection and misalignment that can lead to backlash.
  • Bearing Selection: High-quality bearings with minimal play contribute to reduced backlash and smoother motion by minimizing axial and radial movement of the gears.
  • Lubrication: Adequate lubrication reduces friction, wear, and vibration, promoting efficient power transfer and minimizing backlash-related issues.
  • Tolerances and Manufacturing Precision: Tight manufacturing tolerances and precision machining processes ensure consistent gear geometry, alignment, and positioning, minimizing any potential sources of backlash.

By incorporating these design principles and practices, bevel gearboxes are engineered to achieve tight backlash control and efficient power transmission. This makes them suitable for applications where precise motion control, accuracy, and reliability are crucial, such as robotics, aerospace, automotive, and industrial machinery.

bevel gearbox

Limitations of Torque and Speed Handling in Bevel Gearboxes

While bevel gearboxes offer numerous advantages, they do have limitations in terms of the maximum torque and speed they can handle:

  • Torque Limitations: The torque capacity of a bevel gearbox is influenced by factors such as the size of the gears, the material used, and the tooth geometry. Excessive torque can lead to gear tooth failure, wear, or even breakage.
  • Speed Limitations: High-speed applications can pose challenges for bevel gearboxes. As rotational speed increases, the centrifugal forces acting on the gears also increase, leading to potential issues with stability, vibration, and heat generation.
  • Heat Dissipation: Bevel gearboxes may generate heat due to friction and the load-carrying nature of the gears. Prolonged operation at high speeds or under heavy loads can result in increased heat, which may require additional cooling mechanisms.
  • Material and Design: The material used for the gears and gearbox housing, as well as the design and manufacturing quality, play a significant role in determining the torque and speed limits of the gearbox. Inadequate material selection or poor design can result in premature failure.
  • Application-Specific Considerations: The limitations of bevel gearboxes may vary based on the specific application requirements, environmental conditions, and operational factors. It’s important to carefully assess the suitability of a bevel gearbox for a given task.

Engineers and designers need to carefully analyze the torque and speed requirements of an application to ensure that the selected bevel gearbox can operate safely and effectively within its specified limits.

bevel gearbox

Direction of Rotational Motion Change by Bevel Gears in a Bevel Gearbox

Bevel gears in a bevel gearbox are specifically designed to change the direction of rotational motion between intersecting shafts. They achieve this by utilizing the unique geometry of their tooth profiles, which allows them to transmit motion smoothly and efficiently even when the shafts are positioned at an angle other than 90 degrees.

When two bevel gears mesh together, their teeth engage and transfer rotational force from one gear to the other. Depending on the gear arrangement, the direction of rotation can be changed from input to output or vice versa. For example, in a straight bevel gear arrangement, the gears are set at a 90-degree angle, and the input and output shafts are perpendicular to each other. As the input gear rotates, it transfers its motion to the output gear, resulting in a change in the direction of rotation between the two shafts.

In more complex configurations, such as spiral bevel gears, the teeth are designed in a spiral pattern, which allows for smoother engagement and better load distribution. This makes them suitable for applications where higher torque and efficiency are required, and the shafts are positioned at angles other than 90 degrees.

In summary, bevel gears in a bevel gearbox are essential components that enable the transmission of rotational motion and power between intersecting shafts while changing the direction of rotation as needed for various mechanical systems and industrial applications.

China Best Sales Gearbox for Agricultural Machinery 540 Pto Tractor Speed Increaser High Quantity Manufacturers Suppliers Miter Bevel Rotary Mower Cutter Tiller Brush Hog Mower   gearbox drive shaft	China Best Sales Gearbox for Agricultural Machinery 540 Pto Tractor Speed Increaser High Quantity Manufacturers Suppliers Miter Bevel Rotary Mower Cutter Tiller Brush Hog Mower   gearbox drive shaft
editor by CX 2023-12-12

China Professional Kpm53-63-75-86 Kpb63-75-86-90 Helical Gearbox for Agriculture Machinery car gearbox

Product Description

Product Description

KPM-KPB series helical-hypoid gearboxes are the new-generation product with a compromise of advanced technology both at home and abroad.This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.
Main Features:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency(up to 92%), energy saving and environmental protection.
(3) High quality aluminum alloy housing, light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking appearance, durable service life and small volume.
(6) Suitable for all round installation, wide application and easy use.
(7) KPM series can replace NMRV worm gearbox; KPB series can replace CZPT W series worm gearbox;
(8) Modular and multi-structure can meet the demands of various conditions.
 Main Material:
(1) Housing: aluminum alloy 
(2) Gear wheel: 20CrMnTiH1,carbonize & quencher heat treatment make the hardness of gears surface up to 56-62 HRC, retain carburization layers thickness between 0.3 and 0.5mm after precise grinding.

Detailed Photos

Product Parameters

Model Information:

GEARBOX SELECTING TABLES    
KPM50..           n1=1400r/min       160Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM50C   300 294.05 4.8 130  4100   N/A N/A N/A    
KPM50C   250 244.29 5.8 130  4100   N/A N/A N/A    
KPM50C   200 200.44 7.0  130  4100   N/A N/A N/A    
KPM50C   150 146.67 9.6 160  4000   N/A N/A N/A    
KPM50C   125 120.34 12 160  3770     N/A N/A    
KPM50C   100 101.04 14 160  3560     N/A N/A    
KPM50C   75 74.62 19 160  3220     N/A N/A    
KPM50C   60 62.36 23 160  3030     N/A N/A    
KPM50C   50 52.36 27 160  2860     N/A N/A    
2 Stage    
KPM50B   60 58.36 24 130  2960     N/A N/A    
KPM50B   50 48.86 29 130  2790       N/A    
KPM50B   40 40.09 35 130  2610       N/A    
KPM50B   30 29.33 48 160  2350       N/A    
KPM50B   25 24.07 59 160  2200            
KPM50B   20 20.21 70 160  2080            
KPM50B   15 14.92 94 160  1880            
KPM50B   12.5 12.47 113 160  1770            
KPM50B   10 10.47 134 160  1670            
KPM50B   7.5 7.73 182 160  1510            
                         
                         
KPM63..,KPB63..           n1=1400r/min       180Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM63C KPB63C 300 302.50  4.7 160  4800   N/A N/A N/A    
KPM63C KPB63C 250 243.57  5.8 160  4800   N/A N/A N/A    
KPM63C KPB63C 200 196.43  7.2  160  4800     N/A N/A    
KPM63C KPB63C 150 151.56  9.3 180  4650     N/A N/A    
KPM63C KPB63C 125 122.22  12 180  4330     N/A N/A    
KPM63C KPB63C 100 94.50  14 180  4070     N/A N/A    
KPM63C KPB63C 75 73.33  20 180  3650       N/A    
KPM63C KPB63C 60 63.33  23 180  3480       N/A    
KPM63C KPB63C 50 52.48  27 180  3270       N/A    
2 Stage    
KPM63B KPB63B 60 60.50  24 160  3430       N/A    
KPM63B KPB63B 50 48.71  29 160  3190            
KPM63B KPB63B 40 39.29  36 160  2970            
KPM63B KPB63B 30 30.31  47 180  2720            
KPM63B KPB63B 25 24.44  58 180  2530 N/A          
KPM63B KPB63B 20 18.90  70 180  2380 N/A          
KPM63B KPB63B 15 14.67  96 180  2130 N/A N/A        
KPM63B KPB63B 12.5 12.67  111 180  2030 N/A N/A        
KPM63B KPB63B 10 10.50  134 180  1910 N/A N/A        
KPM63B KPB63B 7.5 7.60  185 180  1710 N/A N/A        
                         
                         
KPM75..,KPB75..           n1=1400r/min           350Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM75C KPB75C 300 297.21  4.8 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 250 240.89  5.9 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 200 200.66  7.0  300  6500     N/A N/A N/A N/A
KPM75C KPB75C 150 149.30  9.3 350  6500       N/A N/A N/A
KPM75C KPB75C 125 121.00  12 350  5980       N/A N/A N/A
KPM75C KPB75C 100 100.80  15 350  5520       N/A N/A N/A
KPM75C KPB75C 75 79.40  19 350  5040         N/A N/A
KPM75C KPB75C 60 62.43  23 350  4730 N/A       N/A N/A
KPM75C KPB75C 50 49.18  29 350  4370 N/A       N/A N/A
2 Stage
KPM75B KPB75B 60 59.44  24 300  4660 N/A       N/A N/A
KPM75B KPB75B 50 48.18  30 300  4340 N/A       N/A N/A
KPM75B KPB75B 40 40.13  35 300  4080 N/A         N/A
KPM75B KPB75B 30 29.86  47 350  3720 N/A N/A       N/A
KPM75B KPB75B 25 24.20  56 350  3500 N/A N/A        
KPM75B KPB75B 20 20.16  71 350  3230 N/A N/A        
KPM75B KPB75B 15 15.88  93 350  2950 N/A N/A        
KPM75B KPB75B 12.5 12.49  113 350  2770 N/A N/A N/A      
KPM75B KPB75B 10 9.84  143 350  2550 N/A N/A N/A      
KPM75B KPB75B 7.5 7.48  188 350  2330 N/A N/A N/A      
                         
                         
KPM90..,KPB86..           n1=1400r/min           500Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM90C KPB86C 300 297.21  4.8 450  6500     N/A N/A N/A N/A
KPM90C KPB86C 250 240.89  5.9 450  6500       N/A N/A N/A
KPM90C KPB86C 200 200.66  7.0  450  6500       N/A N/A N/A
KPM90C KPB86C 150 151.20  9.3 500  6500       N/A N/A N/A
KPM90C KPB86C 125 125.95  12 500  5980       N/A N/A N/A
KPM90C KPB86C 100 99.22  15 500  5520 N/A       N/A N/A
KPM90C KPB86C 75 75.45  19 500  5040 N/A       N/A N/A
KPM90C KPB86C 60 62.43  23 500  4730 N/A       N/A N/A
KPM90C KPB86C 50 49.18  29 500  4370 N/A       N/A N/A
2 Stage
KPM90B KPB86B 60 59.44  24 450  5890 N/A         N/A
KPM90B KPB86B 50 48.18  30 450  5500 N/A         N/A
KPM90B KPB86B 40 40.13  35 450  5170 N/A N/A        
KPM90B KPB86B 30 30.24  47 500  4710 N/A N/A        
KPM90B KPB86B 25 25.19  56 500  4430 N/A N/A        
KPM90B KPB86B 20 19.84  71 500  4090 N/A N/A N/A      
KPM90B KPB86B 15 15.09  93 500  3730 N/A N/A N/A      
KPM90B KPB86B 12.5 12.49  113 500  3510 N/A N/A N/A      
KPM90B KPB86B 10 9.84  143 500  3240 N/A N/A N/A      
KPM90B KPB86B 7.5 7.48  188 500  2950 N/A N/A N/A      

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

 Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: 2-3 Stage
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Using Helical Gearboxes for Speed Reduction and Speed Increase

Yes, helical gearboxes can be used for both speed reduction and speed increase in various applications. The design of helical gears allows them to transmit motion and power between non-parallel shafts while changing the rotational speed.

Speed Reduction: When the driving gear (pinion) has fewer teeth than the driven gear, the gear ratio leads to speed reduction. This is commonly used in applications where the input speed needs to be decreased while increasing the output torque. For example, helical gearboxes are often employed in conveyor systems to reduce the speed of the motor while maintaining sufficient torque to move heavy loads.

Speed Increase: Helical gearboxes can also achieve speed increase by having the driving gear (pinion) with more teeth than the driven gear. This configuration is less common but can be used to increase the output speed while sacrificing some torque. Speed increase applications are typically seen in scenarios where higher speeds are required, such as in certain types of machinery or industrial processes.

It’s important to note that while helical gearboxes can perform both speed reduction and speed increase, the specific gear ratios and configurations need to be carefully chosen to ensure efficient and reliable operation for the intended application.

helical gearbox

Relationship Between Helix Angle and Load Capacity in Helical Gears

The helix angle of helical gears plays a significant role in determining their load-carrying capacity and overall performance. Here’s the relationship between the helix angle and load capacity:

1. Load Distribution: The helix angle affects how the load is distributed along the gear teeth. A larger helix angle results in a more gradual tooth engagement, allowing for smoother load sharing across multiple teeth. This improves the gear’s ability to handle higher loads.

2. Contact Ratio: The contact ratio, which indicates the number of teeth in contact at any given time, increases with a larger helix angle. A higher contact ratio helps distribute the load over a larger area of the gear teeth, enhancing load-carrying capacity.

3. Tooth Meshing: The helix angle affects how the teeth mesh with each other. A higher helix angle promotes gradual and smoother meshing, reducing the concentration of stress on individual teeth. This results in improved resistance to wear and fatigue.

4. Axial Thrust: Helical gears produce axial thrust due to their helical nature. This thrust can affect the gear’s ability to handle radial loads. Proper consideration of the helix angle can help manage axial thrust and prevent overloading.

5. Lubrication: The helix angle affects the lubrication conditions between gear teeth. A larger helix angle may allow better oil flow and lubrication, reducing friction and wear, thereby enhancing load capacity.

6. Noise and Vibration: The helix angle also influences noise and vibration levels in helical gears. Optimal helix angle selection can minimize noise and vibration, contributing to smoother operation and prolonged gear life.

Optimal Helix Angle Selection: While a larger helix angle generally increases load capacity, it’s important to strike a balance. Extremely large helix angles can lead to reduced tooth strength and efficiency. Engineers consider factors like application requirements, tooth strength, and noise considerations when selecting the optimal helix angle for a specific gear design.

The relationship between the helix angle and load capacity underscores the importance of proper gear design to ensure optimal performance, durability, and reliability in various applications.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China Professional Kpm53-63-75-86 Kpb63-75-86-90 Helical Gearbox for Agriculture Machinery   car gearbox	China Professional Kpm53-63-75-86 Kpb63-75-86-90 Helical Gearbox for Agriculture Machinery   car gearbox
editor by CX 2023-10-30

China high quality OEM Gearbox for Construction Machinery synchromesh gearbox

Product Description

Casting process: Resin sand casting.
Secondary process: Painting, CNC machining, machining center , Drilling, Tapping, deburring and packaging.
Application :  Marine Gear Box, Worm Gear Box, Helical Gear Box, Control Gear Box, Casting Gear Box.
Quality control: TS16949 and ISO 9001 certificates, PPAP document.
Management Software: ERP, OA, Pro-E, PDM, BOM.
 

Description: Gearbox housing
Application: Speed reducer, worm gearbox,
Material: Cast iron GG25/GG30
Drawing format accept: Pdf, Jpg, CAD, IGS, STP,Pro-E
MOULD TOOLING MADE BY CNC machine
Casting Process: Investment casting/Sand casting/ die casting
Mainly Machining Process: By milling and CNC milling
Lead time for sample: 25-30days
Delivery time for normal order: 30days
Payment terms: T/T or negotiate
Delivery port departure HangZhou , ZheJiang PORT

Application: Motor, Electric Cars, Motorcycle, Machinery, Reducer
Layout: Three-Ring
Hardness: Hardened
Installation: Torque Arm Type
Step: Stepless
Type: Worm Gear Box
Customization:
Available

|

Customized Request

helical gearbox

Installation and Alignment of Helical Gearboxes

Proper installation and alignment of a helical gearbox are essential to ensure its optimal performance and longevity. Here are the steps involved:

  1. Preparation: Gather all necessary tools, equipment, and safety gear. Ensure the work area is clean and well-lit.
  2. Mounting: Position the gearbox on the designated mounting surface and secure it using appropriate bolts. Follow the manufacturer’s guidelines for mounting torque and procedures.
  3. Shaft Alignment: Use precision tools such as dial indicators to align the input and output shafts. Achieving accurate shaft alignment minimizes stress on the gears and bearings.
  4. Bolt Tightening: Gradually and evenly tighten the mounting bolts, ensuring the gearbox remains properly aligned. Refer to torque specifications provided by the manufacturer.
  5. Lubrication: Fill the gearbox with the recommended lubricant according to the manufacturer’s specifications. Proper lubrication is crucial for reducing friction and wear.
  6. Alignment Check: After tightening the bolts, recheck the shaft alignment to ensure it hasn’t shifted during the tightening process.
  7. Run-In Period: Gradually introduce load to the gearbox to allow the gears to seat properly. Monitor the gearbox for any unusual noises, vibrations, or temperature changes during this period.
  8. Final Checks: Verify that the gearbox operates smoothly, without excessive noise or vibrations. Monitor the gearbox’s temperature during operation to ensure it remains within recommended limits.
  9. Regular Inspection: Schedule periodic inspections to check for any signs of wear, misalignment, or leakage. Address any issues promptly to prevent further damage.

It’s important to follow the manufacturer’s installation and alignment guidelines specific to the helical gearbox model you’re working with. Improper installation and alignment can lead to premature wear, reduced efficiency, and potential failure of the gearbox.

helical gearbox

Helical Gearboxes and Energy Efficiency

Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

  • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
  • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
  • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
  • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
  • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
  • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
  • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

helical gearbox

Efficiency of Helical Gearboxes Compared to Other Gearbox Types

Helical gearboxes are known for their relatively high efficiency compared to some other gearbox types. Here’s a comparison of their efficiency with other common gearbox configurations:

  • Straight-Cut (Spur) Gearboxes: Helical gearboxes are generally more efficient than straight-cut gearboxes. The helical tooth design allows for smoother engagement and better load distribution, reducing friction and energy losses. This results in higher overall efficiency for helical gearboxes.
  • Bevel Gearboxes: Bevel gearboxes, which are commonly used for right-angle applications, typically have lower efficiency compared to helical gearboxes. The bevel gear design involves sliding contact between gear teeth, leading to higher friction and energy losses.
  • Worm Gearboxes: Helical gearboxes are generally more efficient than worm gearboxes. Worm gearboxes have a relatively lower efficiency due to the sliding action between the worm and the gear, resulting in higher friction and heat generation.
  • Planetary Gearboxes: Planetary gearboxes can offer comparable efficiency to helical gearboxes, especially when well-designed. However, planetary gearboxes can have variations in efficiency depending on factors such as the number of planet gears and gear arrangements.

While helical gearboxes tend to offer good efficiency, it’s important to note that efficiency can also be influenced by factors such as gear quality, lubrication, operating conditions, and maintenance practices. Consulting with gearbox manufacturers and considering specific application requirements is crucial when determining the most efficient gearbox solution.

China high quality OEM Gearbox for Construction Machinery   synchromesh gearbox	China high quality OEM Gearbox for Construction Machinery   synchromesh gearbox
editor by CX 2023-09-22

China best Worm Agricultural Machinery Gearbox Motor Car Tractor Precision Small Transmission Bearing Reducer Bevel Helical Reverse Gearbox Engine comer gearbox

Product Description

worm Agricultural machinery gearbox motor car tractor precision small transmission bearing reducer  bevel helical reverse gearbox engine 

Application of Agricultural Gearbox

Agricultural gearboxes are used in a wide variety of agricultural machinery, including:

  • Tractors
  • Combine harvesters
  • Balers
  • Sprayers
  • Tillers
  • Mowers
  • Irrigation systems

Agricultural gearboxes are responsible for transmitting power from the engine to the various implements and attachments on the machine. They must be able to withstand the harsh conditions of agricultural use, such as dust, dirt, and moisture.

There are 2 main types of agricultural gearboxes: mechanical and hydraulic. Mechanical gearboxes use gears to transmit power, while hydraulic gearboxes use hydraulic fluid. Mechanical gearboxes are typically less expensive than hydraulic gearboxes, but they are not as efficient. Hydraulic gearboxes are more efficient, but they are also more expensive.

The type of agricultural gearbox that is best for a particular application will depend on a number of factors, including the size and power of the engine, the type of machinery, and the operating conditions.

Here are some of the benefits of using agricultural gearboxes:

  • Increased efficiency: Agricultural gearboxes can help to improve the efficiency of agricultural machinery by allowing the engine to operate at its most efficient speed.
  • Increased durability: Agricultural gearboxes are designed to withstand the harsh conditions of agricultural use, such as dust, dirt, and moisture.
  • Increased versatility: Agricultural gearboxes can be used in a variety of agricultural machinery, from tractors to combine harvesters.

If you are looking for a way to improve the efficiency, durability, and versatility of your agricultural machinery, then an agricultural gearbox may be the right solution for you.

Here are some specific examples of how agricultural gearboxes are used in different applications:

  • Tractors: Agricultural gearboxes are used in tractors to transmit power from the engine to the wheels. This allows the tractor to move forward, backward, and turn.
  • Combine harvesters: Agricultural gearboxes are used in combine harvesters to transmit power from the engine to the various components of the harvester, such as the threshing drum, the cleaning system, and the grain elevator. This allows the combine harvester to harvest crops efficiently.
  • Balers: Agricultural gearboxes are used in balers to transmit power from the engine to the baling mechanism. This allows the baler to compress hay or straw into bales.
  • Sprayers: Agricultural gearboxes are used in sprayers to transmit power from the engine to the sprayer boom. This allows the sprayer to apply pesticides or fertilizers evenly over a field.
  • Tillers: Agricultural gearboxes are used in tillers to transmit power from the engine to the tiller blades. This allows the tiller to prepare soil for planting.
  • Mowers: Agricultural gearboxes are used in mowers to transmit power from the engine to the mower blades. This allows the mower to cut grass.
  • Irrigation systems: Agricultural gearboxes are used in irrigation systems to transmit power from the engine to the pumps. This allows the pumps to move water from a source to the fields.

Agricultural gearboxes are a vital component in many different types of agricultural machinery. They provide power and control for a variety of tasks, from harvesting crops to irrigating fields.

We also offer PTO shaft

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Three-Step
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Troubleshooting Common Issues in Helical Gear Systems

Troubleshooting helical gear systems involves identifying and addressing common issues that can affect their performance. Here’s a step-by-step process:

  1. Visual Inspection: Begin by visually inspecting the gearbox for any signs of wear, damage, or misalignment. Look for worn or chipped gear teeth, oil leakage, and unusual noise.
  2. Noise Analysis: If noise is present, analyze its type and frequency. Whining or grinding noises could indicate misalignment or damaged gears, while clicking or knocking sounds might point to loose components.
  3. Lubrication Check: Ensure that the gearbox is properly lubricated with the recommended type and quantity of lubricant. Insufficient lubrication can lead to increased friction and wear.
  4. Alignment Check: Check the alignment of the gears and shafts. Misalignment can result in uneven wear, noise, and reduced efficiency. Realign components if necessary.
  5. Gear Inspection: Inspect gear teeth for signs of pitting, scoring, or wear. Replace any damaged gears to prevent further issues.
  6. Bearing Examination: Check the condition of bearings that support shafts and gears. Worn or damaged bearings can lead to increased vibration and noise.
  7. Tightening and Fastening: Ensure that all bolts, fasteners, and connections are properly tightened. Loose components can cause vibrations and noise.
  8. Load Analysis: Evaluate the load conditions and operating parameters of the gearbox. Ensure that the gearbox is not subjected to loads beyond its design capacity.
  9. Temperature Monitoring: Monitor the operating temperature of the gearbox. Excessive heat can indicate problems such as inadequate lubrication or overloading.
  10. Consulting Experts: If issues persist or if you’re unsure about the diagnosis and solution, consult gearbox experts or manufacturers for guidance.

By following this troubleshooting process, you can identify and resolve common issues in helical gear systems, ensuring optimal performance and longevity.

helical gearbox

Lubrication Requirements for Maintaining Helical Gearboxes

Lubrication is essential for the proper functioning and longevity of helical gearboxes. The lubrication requirements include:

  • Viscosity: Selecting a lubricant with the appropriate viscosity is crucial. The viscosity should provide sufficient lubrication and ensure a protective film between gear teeth under varying operating conditions.
  • Extreme Pressure (EP) Properties: Helical gears often experience high contact pressures. Lubricants with EP additives form a protective barrier that prevents metal-to-metal contact and reduces wear.
  • Oil Additives: Anti-wear additives, antioxidants, and corrosion inhibitors enhance the lubricant’s performance and protect gears from wear and degradation.
  • Frequent Inspections: Regularly inspect the lubricant’s condition to detect contamination, degradation, or depletion. Scheduled oil analysis can help monitor the health of the lubricant.
  • Proper Lubricant Application: Ensure the gearbox is properly filled with the correct amount of lubricant. Follow manufacturer recommendations for lubricant type and quantity.
  • Lubricant Change Intervals: Establish regular lubricant change intervals based on operating conditions. Extreme conditions or heavy loads may require more frequent changes.

Appropriate lubrication minimizes friction, wear, and heat generation, leading to improved efficiency, reduced maintenance, and extended gearbox life. It’s crucial to follow the manufacturer’s guidelines and consult with lubrication experts to select the right lubricant and maintenance practices for your specific helical gearbox application.

China best Worm Agricultural Machinery Gearbox Motor Car Tractor Precision Small Transmission Bearing Reducer Bevel Helical Reverse Gearbox Engine   comer gearbox	China best Worm Agricultural Machinery Gearbox Motor Car Tractor Precision Small Transmission Bearing Reducer Bevel Helical Reverse Gearbox Engine   comer gearbox
editor by CX 2023-09-14

China Best Sales Tractor Rotary Mowers Bevel Tillers Pto Shaft Reducer Gearbox for Farm and Agricultural Machinery components of gearbox

Product Description

Tractor Rotary Mowers Bevel Fertilizer Spreader Tillers Right Angle Pto Shaft Reducer Gearbox for Farm and Agricultural Machinery

Established in Nov.2002,HangZhou CZPT is a professional manufacturer and supplier in supplying spare parts and accessories for agricultural machinery. In addition to the 3000 standards parts, we also offer our customers tailor-made articles or assemblies that are for special application.
 
HangZhou CZPT focused on the development and production of gearboxes with a professional team and continue to learn advanced technology; the use of first-class equipment; high quality supply chain system, relying on these, the gearboxes get high reputation among customers at home and abroad.
 
These gearboxes are widely used in rotary tillers, lawn mowers, harvesters, hole diggers, pesticide sprayers, irrigation machines, fertilizer spreaders, blenders and so on. The main products are:
 
–Straight bevel gearbox
–Spiral bevel gearbox
–Planetary reducer
–Worm gearbox

HangZhou CZPT International Trading Co.,Ltd is a modern enterprise specilizing in the development, production, sales and services of PTO shaft. We adhere to the principle of “Precise Driveline, Advocate Green”, using advanced technology and equipments to ensure all the technical standards of precise driveline. So that the transmission efficiency can be maxmized and every drop of resource of customers’ can be saved. Meanwhile, we have a customer-centric service system, providing a full range of pre-sale, sale and after-sale service. Customer satisfaction is our forever pursuit.

We follow the principle of people first, trying our best to set up a pleasant surroundings and platform of performance for each employee, so everyone can be self-consciously active to join in “Precise Driveline, Adocate Green” to embody the self-worth, enterprise value and social value.

Newnuro’s goal is: reducing customer’s purchase budget, support customers to earn more market.
Newnuro always finds solution for customers.Customer satisfaction is our ultimate goal and forever pursuit.

 

Application: Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Assembled
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bevel gearbox

Handling High Torque and Speed Requirements in Bevel Gearboxes

Bevel gearboxes are versatile mechanical components capable of handling a wide range of torque and speed requirements, making them suitable for various industrial applications.

The ability of bevel gearboxes to handle high torque and speed requirements depends on several factors:

  • Gear Material: The choice of gear material greatly influences the torque and speed capacity of the bevel gearbox. High-strength materials like alloy steel or hardened steel are often used to withstand higher loads and speeds.
  • Design and Tooth Profile: The design of the bevel gears, including the tooth profile and size, plays a significant role in determining their load-bearing capacity and efficiency. Precisely engineered tooth profiles ensure smooth and efficient power transmission.
  • Lubrication and Cooling: Proper lubrication and cooling mechanisms are essential to manage heat generated during high-speed and high-torque operations. Adequate lubrication reduces friction and wear, enhancing the gearbox’s overall performance and longevity.
  • Bearing Selection: High-quality bearings that can handle both radial and axial loads are critical in supporting the rotational motion and absorbing forces generated by high torque and speed.
  • Alignment and Installation: Accurate alignment and installation of the bevel gearbox are vital to prevent misalignment-related issues that can lead to premature failure under high loads.

Bevel gearboxes are commonly used in applications where both high torque and speed are required, such as heavy machinery, vehicles, industrial equipment, and more. Proper engineering, material selection, and maintenance practices contribute to the ability of bevel gearboxes to efficiently handle the demands of various high-performance scenarios.

bevel gearbox

Efficient Power Transmission and Torque Transfer with Bevel Gearboxes

Bevel gearboxes are designed to ensure efficient power transmission and torque transfer in various mechanical systems. Here’s how they contribute to these aspects:

  • Multiple Gear Teeth Engagement: Bevel gearboxes typically have multiple gear teeth in contact simultaneously, distributing the load across a larger surface area. This feature enhances torque-carrying capacity and minimizes wear, resulting in efficient torque transfer.
  • High Gear Ratio: Bevel gearboxes can achieve high gear ratios, allowing them to convert high-speed, low-torque input into low-speed, high-torque output. This capability is valuable for applications requiring precise control over rotational speed and force.
  • Smooth Motion Transfer: The meshing of bevel gears ensures smooth and continuous motion transfer between intersecting shafts. This is essential for maintaining consistent power transmission and reducing vibration or noise.
  • Optimized Gear Tooth Design: Bevel gear teeth are carefully engineered with specific profiles and angles to minimize friction and maximize contact area. This design optimization enhances the efficiency of torque transfer while reducing energy losses due to friction.
  • Precise Machining and Alignment: Precision machining and proper alignment of bevel gears within the gearbox contribute to efficient power transmission. Accurate gear meshing reduces the likelihood of backlash and ensures minimal energy wastage.

Bevel gearboxes are chosen for applications where efficient power transmission, precise torque transfer, and reliable motion control are essential requirements.

bevel gearbox

Direction of Rotational Motion Change by Bevel Gears in a Bevel Gearbox

Bevel gears in a bevel gearbox are specifically designed to change the direction of rotational motion between intersecting shafts. They achieve this by utilizing the unique geometry of their tooth profiles, which allows them to transmit motion smoothly and efficiently even when the shafts are positioned at an angle other than 90 degrees.

When two bevel gears mesh together, their teeth engage and transfer rotational force from one gear to the other. Depending on the gear arrangement, the direction of rotation can be changed from input to output or vice versa. For example, in a straight bevel gear arrangement, the gears are set at a 90-degree angle, and the input and output shafts are perpendicular to each other. As the input gear rotates, it transfers its motion to the output gear, resulting in a change in the direction of rotation between the two shafts.

In more complex configurations, such as spiral bevel gears, the teeth are designed in a spiral pattern, which allows for smoother engagement and better load distribution. This makes them suitable for applications where higher torque and efficiency are required, and the shafts are positioned at angles other than 90 degrees.

In summary, bevel gears in a bevel gearbox are essential components that enable the transmission of rotational motion and power between intersecting shafts while changing the direction of rotation as needed for various mechanical systems and industrial applications.

China Best Sales Tractor Rotary Mowers Bevel Tillers Pto Shaft Reducer Gearbox for Farm and Agricultural Machinery   components of gearbox	China Best Sales Tractor Rotary Mowers Bevel Tillers Pto Shaft Reducer Gearbox for Farm and Agricultural Machinery   components of gearbox
editor by CX 2023-09-07

China manufacturer K-Series Steel Planetary Gear Steering Gearbox for Mining Machinery sequential gearbox

Product Description

The K-series gearbox is a product of SEW-EURODRIVE  It is a right-angle speed reducer with a helical gear and worm gear combined drive system, designed and optimized according to international standards. The S-series gearbox provides higher efficiency than worm gearboxes and also lower noise during operation  It is widely applied in robots, CNC machines, welding equipment, plastic machines, packaging and printing machinery, textile and dyeing machinery, construction machinery, communications, and other fields, especially suitable for frequent starting occasions

The S-series gearbox is available in several sizes and design variants, including foot-mounted, flange-mounted, and torque arm-mounted options. Input can be provided through a motor, an IEC flange input, or a shaft input. Output can be provided through a CZPT shaft or a hollow shaft

The housing of the K-series gearbox is made of HT250 high-strength cast iron. The worm gear is made of high-quality copper, while the gears are made of 20CrMnTi. The surface hardness of the gears is HRC58-62. The input/output shaft is made of 40Cr steel. The gearbox undergoes carburizing and quenching heat treatment to improve its durability

The bearings used in the K-series gearbox are from C&U or other reputable brands. The oil seal is from CZPT or other reputable brands. The lubricating oil used in the gearbox is gear oil. The gearbox is packed in a plywood case for safe transportation

The K-series gearbox has several features that make it an attractive choice for many applications. Its simple design makes it cost-effective. It has strong vibration absorption capabilities and operates at low temperatures. It also operates with low noise levels. A wide range of speed ratios is available to choose from. The gearbox can function on its own under certain conditions. It has good sealing properties and is resistant to corrosion, making it suitable for use in harsh conditions. It can also be combined with the R series helical gear reducer for additional functionality

In summary, the K-series gearbox from SEW-EURODRIVE is a versatile and reliable right-angle speed reducer that provides high efficiency and low noise operation. Its wide range of design variants and options make it suitable for use in many different applications, especially those that require frequent starting. Its robust construction and high-quality materials ensure its durability and longevity.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

In planetary gearboxes, the arrangement of shafts plays a crucial role in determining the gearbox’s overall structure and functionality. The two common shaft arrangements are coaxial and parallel configurations:

Coaxial Shaft Arrangement: In a coaxial arrangement, the input shaft and output shaft are positioned along the same axis, resulting in a compact and streamlined design. The planetary gears and other components are aligned concentrically around the central axis, allowing for efficient power transmission and reduced space requirements. Coaxial planetary gearboxes are commonly used in applications where space is limited, and a compact form factor is essential. They are often employed in robotics, automotive systems, and aerospace mechanisms.

Parallel Shaft Arrangement: In a parallel arrangement, the input and output shafts are positioned parallel to each other but on different axes. The planetary gears are aligned in a way that allows the power to be transmitted from the input shaft to the output shaft via a combination of meshing gears. This arrangement allows for a larger gear diameter and higher torque transmission capabilities. Parallel planetary gearboxes are often used in applications requiring high torque and heavy-duty performance, such as industrial machinery, construction equipment, and material handling systems.

The choice between coaxial and parallel shaft arrangements depends on the specific requirements of the application. Coaxial configurations are favored for compactness and efficient power transmission, while parallel configurations excel in handling higher torque and heavy loads. Both arrangements offer distinct advantages and are chosen based on factors like available space, torque demands, load characteristics, and overall system design.

planetary gearbox

Maintenance Practices to Extend the Lifespan of Planetary Gearboxes

Proper maintenance is essential for ensuring the longevity and optimal performance of planetary gearboxes. Here are specific maintenance practices that can help extend the lifespan of planetary gearboxes:

1. Regular Inspections: Implement a schedule for routine visual inspections of the gearbox. Look for signs of wear, damage, oil leaks, and any abnormal conditions. Early detection of issues can prevent more significant problems.

2. Lubrication: Adequate lubrication is crucial for reducing friction and wear between gearbox components. Follow the manufacturer’s recommendations for lubricant type, viscosity, and change intervals. Ensure that the gearbox is properly lubricated to prevent premature wear.

3. Proper Installation: Ensure the gearbox is installed correctly, following the manufacturer’s guidelines and specifications. Proper alignment, torque settings, and clearances are critical to prevent misalignment-related wear and other issues.

4. Load Monitoring: Avoid overloading the gearbox beyond its designed capacity. Excessive loads can accelerate wear and reduce the gearbox’s lifespan. Regularly monitor the load conditions and ensure they are within the gearbox’s rated capacity.

5. Temperature Control: Maintain the operating temperature within the recommended range. Excessive heat can lead to accelerated wear and lubricant breakdown. Adequate ventilation and cooling measures may be necessary in high-temperature environments.

6. Seal and Gasket Inspection: Regularly check seals and gaskets for signs of leakage. Damaged seals can lead to lubricant loss and contamination, which can cause premature wear and gear damage.

7. Vibration Analysis: Use vibration analysis techniques to detect early signs of misalignment, imbalance, or other mechanical issues. Monitoring vibration levels can help identify problems before they lead to serious damage.

8. Preventive Maintenance: Establish a preventive maintenance program based on the gearbox’s operational conditions and usage. Perform scheduled maintenance tasks such as gear inspections, lubricant changes, and component replacements as needed.

9. Training and Documentation: Ensure that maintenance personnel are trained in proper gearbox maintenance procedures. Keep comprehensive records of maintenance activities, inspections, and repairs to track the gearbox’s condition and history.

10. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance and servicing guidelines specific to the gearbox model and application. Following these guidelines will help maintain warranty coverage and ensure best practices are followed.

By adhering to these maintenance practices, you can significantly extend the lifespan of your planetary gearbox, minimize downtime, and ensure reliable performance for your industrial machinery or application.

planetary gearbox

Advantages of Planetary Gearboxes Compared to Other Gearbox Configurations

Planetary gearboxes, also known as epicyclic gearboxes, offer several advantages compared to other gearbox configurations. These advantages make them well-suited for a wide range of applications. Here’s a closer look at why planetary gearboxes are favored:

  • Compact Size: Planetary gearboxes are known for their compact and space-efficient design. The arrangement of multiple gears within a single housing allows for high gear reduction ratios without significantly increasing the size of the gearbox.
  • High Torque Density: Due to their compact design, planetary gearboxes offer high torque density, meaning they can transmit a significant amount of torque relative to their size. This makes them ideal for applications where space is limited, but high torque is required.
  • Efficiency: Planetary gearboxes can achieve high efficiency levels, especially when properly lubricated and well-designed. The arrangement of multiple meshing gears allows for load distribution, reducing individual gear tooth stresses and minimizing losses due to friction.
  • Multiple Gear Stages: Planetary gearboxes can be designed with multiple stages, allowing for higher gear reduction ratios. This is particularly advantageous when precise control of output speed and torque is required.
  • High Gear Ratios: Planetary gearboxes can achieve high gear reduction ratios in a single stage, eliminating the need for multiple external gears. This simplifies the overall design and reduces the number of components.
  • Load Sharing: The multiple gear meshing arrangements in planetary gearboxes distribute loads evenly across multiple gears, reducing the stress on individual components and enhancing overall durability.
  • High Precision: Planetary gearboxes offer high precision and accuracy in gear meshing, making them suitable for applications that demand precise motion control.
  • Quiet Operation: The design of planetary gearboxes often leads to smoother and quieter operation compared to some other gearbox configurations, contributing to improved user experience.

Overall, the advantages of planetary gearboxes in terms of size, torque density, efficiency, versatility, and precision make them an attractive choice for a wide range of applications across industries, including robotics, automotive, aerospace, and industrial machinery.

China manufacturer K-Series Steel Planetary Gear Steering Gearbox for Mining Machinery   sequential gearbox	China manufacturer K-Series Steel Planetary Gear Steering Gearbox for Mining Machinery   sequential gearbox
editor by CX 2023-09-07

China supplier Agricultural Machinery Accessories Square Hay Baler Factory Direct Cheap Price Spiral Bevel Main Gearbox with Hot selling

Product Description

Agricultural Machinery Accessories Square Hay Baler Factory Direct Cheap Price Spiral Bevel Main Gearbox

GEAR MATERIALS
20CrMnTi/20CrMnMo for your choice

CASTINGS MATERIALS
Gray cast iron HT250 according to standard GB/T 1348-2009 Ductile iron QT450-10 according to standard GB/T 1348-2009 Cast steel ZG310-570 according to standard GB/T 5613-2014

SHAFTS MATERIALS
40Cr,45#,20CrMnTi,20CrMnMo for your choice according to your request.

POWER To ensure the correct use of the product we recommand to pay attention to the specifications mentioned on our technical sheet.Consider also the input rotation speed,the power input and the transmission ratios.Where the rotation or other working conditions are different,please contact LongQuan technical department.

LUBRICATION
The reducer is usually supplied without lubricant.The recommended quantity of lubricant is indicated on our catalogue and the first replaced must be done after 50-60 hours of running,then replaced after 600-800 working hours. The emptying of the gearbox should be made immediately after the working,with the oil still hot,in order to avoid the deposition of sludge.Check frequently the oil level and top up the oil whenever necessary.

 

Related Products

Factory

Extensive use for agricultural machines
Guarantee: High precision, high wear resistance, low noise, smooth and steady, high strength

Our factory

 

 

Type: Agricultural Gearbox
Usage: Farmland Infrastructure, Agricultural Machine
Material: Carbon Steel
Power Source: Electricity
Weight: OEM
After-sales Service: Installation Guide
Samples:
bevel gearbox

Challenges of Using Bevel Gearboxes

While bevel gearboxes offer various benefits, there are certain challenges that can arise when using them:

  • Lubrication: Proper lubrication is essential to reduce friction, wear, and heat generation in bevel gearboxes. However, ensuring effective lubrication in the meshing bevel gears can be challenging due to their complex geometry and the potential for oil pooling or inadequate coverage.
  • Noise and Vibration: Bevel gearboxes can produce noise and vibration during operation, especially at higher speeds. The interaction of the gear teeth can lead to noise generation, which may require additional measures such as sound insulation or vibration dampening to mitigate.
  • Alignment: Precise alignment of the bevel gears is crucial to ensure smooth and efficient power transmission. Misalignment can lead to increased wear, reduced efficiency, and even gear tooth failure. Achieving proper alignment can be more complex in bevel gearboxes compared to other gearbox types.
  • Maintenance: Bevel gearboxes may require more frequent maintenance compared to other gear systems. Regular inspections, lubrication checks, and gear tooth profile monitoring are necessary to detect and address any issues before they escalate.
  • Space Constraints: The design of bevel gearboxes can be bulky, especially when used in applications that require a high gear ratio. This can pose challenges in situations where space is limited.
  • Heat Dissipation: High-speed or heavy-duty applications can generate significant heat in bevel gearboxes. Adequate heat dissipation mechanisms, such as cooling fins or lubrication cooling, may be required to prevent overheating and premature failure.

Engineers and manufacturers need to carefully address these challenges to ensure the reliable and effective use of bevel gearboxes in various applications.

US$ 999/Piece
1 Piece(Min.Order)

|
Request Sample

bevel gearbox

Advantages of Bevel Gearboxes in Specific Scenarios

Bevel gearboxes offer distinct advantages in certain scenarios, making them preferred over other gearbox types:

  • Angular Transmission: When rotational motion needs to be transmitted between intersecting shafts at different angles, bevel gearboxes excel due to their ability to change direction.
  • Compact Spaces: Bevel gearboxes are well-suited for applications with limited space, as they can fit into tight configurations without sacrificing performance.
  • High Torque at 90 Degrees: In situations requiring high torque transmission at a 90-degree angle, bevel gearboxes are more efficient than other types.
  • Steering Mechanisms: Bevel gearboxes are commonly used in steering systems of vehicles and machinery, providing smooth and accurate directional control.
  • Complex Motion Requirements: When machinery or equipment requires intricate motion patterns involving changes in direction and speed, bevel gearboxes offer the necessary versatility.
  • Heavy-Duty Applications: Bevel gearboxes excel in heavy-duty environments where robustness, torque transmission, and durability are crucial.

The specific design and capabilities of bevel gearboxes make them a preferred choice in these scenarios, contributing to optimal performance and efficiency in various industrial applications.

bevel gearbox

Types of Bevel Gearboxes and Their Classification

Bevel gearboxes come in various types, each designed for specific applications and requirements. They are classified based on factors such as gear arrangement, shaft orientation, and usage. Some common types of bevel gearboxes include:

  • Straight Bevel Gearboxes: These gearboxes use straight bevel gears and are suitable for transmitting motion between intersecting shafts at a 90-degree angle.
  • Spiral Bevel Gearboxes: These gearboxes use spiral bevel gears and are employed when the intersecting shafts are at angles other than 90 degrees. They offer smoother operation and higher load capacity.
  • Skew Bevel Gearboxes: In skew bevel gearboxes, the axes of the input and output shafts are not parallel or intersecting. These gearboxes are used in applications where non-parallel and non-intersecting shafts need to be connected.
  • Angular Bevel Gearboxes: Angular bevel gearboxes are designed to connect shafts at a specific angle, often used in applications where the required shaft angle is different from standard bevel gear configurations.

The classification of bevel gearboxes is based on the arrangement and orientation of the gear teeth and shafts. Manufacturers offer a variety of designs to accommodate different industrial needs and ensure efficient motion transmission at various angles.

China supplier Agricultural Machinery Accessories Square Hay Baler Factory Direct Cheap Price Spiral Bevel Main Gearbox   with Hot selling		China supplier Agricultural Machinery Accessories Square Hay Baler Factory Direct Cheap Price Spiral Bevel Main Gearbox   with Hot selling
editor by CX 2023-09-04

China Standard Agriculture Machinery Gear Box Agri Farm Tractor Rotary Mowers Bevel Digger Fertilizer Spreader Right Angle Drive Shaft Bevel Pto Agriculture Gearboxes with Best Sales

Product Description

Agriculture Machinery Gear Box Agri Farm Tractor Rotary Mowers Bevel Digger Fertilizer Spreader Right Angle Drive Shaft Bevel Pto Agriculture Gearboxes.

This Miter Bevel Gearbox is also known as spiral bevel gearbox, spiral bevel gear drives, spiral bevel gear reducers, right angle miter gearbox, or 90 degree bevel gearbox. The spiral bevel gear delivers high transmission capacity and high efficiency. The Spiral Bevel Gearboxes are specifically engineered for use with machine screw jacks and actuators in multiple jack systems. You have several linear drives that you would like to connect together – i.e. to synchronize. For economic reasons, you don’t want to drive every single linear drive separately with its own electric motor. This is where our bevel gearboxes come into their own.

Right Angle Spiral Bevel Gearbox Applications: 90-degree reducers are used throughout dozens of industries to alter torque and speed in drive components. Any use that demands the reliable transfer of speed or power. There are countless applications for 3-way transmission gearboxes, some of which include: Industrial Dryers, Folding Machines, Brushing Machinery, Power Transmission Equipment, Pumps, Damper Controls, Case Openers, Paper Rewinders, Test Equipment. Our Right Angle Bevel Gearbox lineup includes shaft to shaft, shaft to bore, bore to bore, 2 shaft, 3 shaft, high ratio, and low profile models. All our Bevel T right angle gearboxes are built with a single output shaft extended out both sides of the box, so both ends rotate simultaneously in the same direction.

Compact Cubic Style Spiral Bevel Gearbox with CZPT Shafts
The spiral bevel gearbox offers a robust, powerful and compact design, for right angle power transmission. The practical cubic shape of bevel gearboxes allow universal mounting possibilities on every kind of machines. They are proven in the market for their versatility, very low backlash and low transmission error. The design comprises of ball bearings for quiet operation and tapered bearings for higher radial load capacity. Application in Pulp and paper industry, food processing, off-shore industry, mining and mineral industry, paper machine drives, pulper drives, blowers, pumps, vacuum pump drives and flooding pump stations.
JTP Series: Solid shaft input, CZPT shaft output. 
JTPH Series: CZPT shaft input, Hollow shaft output. 
JTPF Series: Input Flange(IEC, NEMA), CZPT shaft output. 
JTPG Series: Input Flange(IEC, NEMA), Hollow shaft output. 

Features:
* Ultra Compact Design. All-round machined symmetrical housing, and all-round tapped holes for universal mounting, 6 possible mounting positions.
* Gears ratios of 1:1, 1.5:1, 2:1, 3:1, 4:1 and 5:1 are actual ones. 
* Power range from 0.1kw to 156kw, Torque range from 11.5Nm to 1199Nm.
* Gear transmission average efficiency up to 94%. 
* 2-way, 3-way and 4-way Configurations. Allows both horizontal and vertical shafts.
* CZPT Shaft, Hollow Shaft, and Direct motor mount or via motor flanges.
* Various Shafts Arrangements, Rotation Directions and Mounting Positions available.
* High efficiency, high transmission capacity, low backlash, noiseless operation, low running temperature and long service life.

Structures and Materials: 
* Spiral bevel gears: High purity rugged alloy steel 20CrMnTiH, carburizing and quenching, case hardened and lapped in pairs for intersecting shafts, low noise with grinded spiral teeth, high torque with milled teeth, high rigidity and wear resistance.
* Housings(Gearboxes): High rigidity cast iron housings designed for superior thermal conductivity provides rigid gear and bearing support. Custom corrosion resistant stainless steel housings for All sizes. Custom corrosion resistant lightweight aluminum alloy housings for sizes 65 to 140. 
* Input and output shafts: Hardened and tempered alloy steel 40Cr material, hanging heavy load capacity With key and key way. Custom corrosion resistant stainless steel shafts, or other corrosion resistance painting shafts, spline shaft, shaft without key and key way.
* Bearings: Heavy duty tapered roller bearing. Custom reinforced bearings for higher radial and axial load. Custom corrosion resistant stainless steel bearings. 

T Series Right Angle Spiral Bevel Gearbox
JT Series Spiral Bevel Gearboxes with the use of high-precision spiral bevel gears, delivers high transmission efficiency and high transfer capacity, high performance, low backlash, smooth rotation, silent drive possible, low running temperature, long life and easy installation. General applications in worm gear screw jack systems, industrial dryers, folding machines, brushing machinery, power transmission equipment, pumps, damper controls, case openers, paper rewinders, test equipment, blowers and fans, unloaders and unscramblers, bottle capping, electroplating machinery, folding machines, food processing equipment, transfer machines, chemical mixers and recording equipment.

Features:
* Used in pairs case hardened alloy steel spiral bevel gears to transmit rotary motion, mechanical power and torque.
* Gears ratios of 1:1, 1.5:1, 2:1, 2.5:1, 3:1, 4:1 and 5:1 are actual ones. 
* Power range from 1.79kw to 335kw, Torque range from 28Nm to 5713Nm.
* Gear transmission average efficiency up to 94%. 
* 2-way, 3-way and 4-way Configurations. Allows both horizontal and vertical shafts.
* CZPT Shaft, Hollow Shaft, and Direct motor mount or via motor flanges.
* Various Shafts Arrangements, Rotation Directions and Mounting Positions available.
* High efficiency, high transmission capacity, low backlash, noiseless operation, low running temperature and long service life.

Structures and Materials: 
* Spiral bevel gears: High purity rugged alloy steel 20CrMnTiH, carburizing and quenching, case hardened and lapped in pairs for intersecting shafts, low noise with grinded spiral teeth, high torque with milled teeth, high rigidity and wear resistance.
* Housings(Gearboxes): High rigidity cast iron housings designed for superior thermal conductivity provides rigid gear and bearing support. 
* Input and output shafts: Hardened and tempered alloy steel 40Cr material, hanging heavy load capacity With key and key way. Custom corrosion resistant stainless steel shafts, or other corrosion resistance painting shafts, spline shaft, shaft without key and key way.
* Bearings: Heavy duty tapered roller bearing. Custom reinforced bearings for higher radial and axial load. Custom corrosion resistant stainless steel bearings. 
* Oil Seals: Double lip oil seal, prevent gear oil leak and dust-proof.

Space-saving Aluminium Gearboxes – Lightweight, Super Small
JTA Series Aluminum Alloy Bevel Gearbox is a small-sized, ultra-lightweight type of our miter gear box. These units are lubricated for life to assure trouble free service. High-performance spiral bevel gear is used to enable silent and high transmission operations. Universal mounting type that can be mounted in any direction. 1:1 and 2:1 ratios, with 2 or 3 shafts orientations. 4 sizes are available to suit your needs in a compact, maintenance free, ready to use package.

Features:
* Compact design, Small sizes, Ultra light weight. 
* Gears ratios of 1:1, 2:1 are actual ones.
* Power range from 0.02kw to 4.94kw, Torque range from 2Nm to 40Nm.
* Gear transmission average efficiency up to 94%. 
* 2-shafts and 3-shafts Configurations. Allows both horizontal and vertical shafts.
* High efficiency, low backlash, noiseless operation, low running temperature and long service life.

Structures and Materials: 
* Spiral bevel gears: High purity rugged alloy steel 20CrMnTiH, carburizing and quenching, case hardened and lapped in pairs for intersecting shafts, low noise with grinded spiral teeth, high torque with milled teeth, high rigidity and wear resistance.
* Housings(Gearboxes): Aluminum alloy. 
* Input and output shafts: Hardened and tempered alloy steel material, hanging heavy load capacity With key and key way. Custom corrosion resistant stainless steel shafts, or other corrosion resistance painting shafts, spline shaft, shaft without key and key way.
* Bearings: Heavy duty tapered roller bearing. Custom reinforced bearings for higher radial and axial load. Custom corrosion resistant stainless steel bearings.
Spiral-bevel gear drives, like all bevel gear drives, are designed for high capacity, efficiency, quiet operation, and long service life. These spiral-bevel gear drives are designed for operation that’s as reliable as it is quiet. Their shafts are heat treated and alloy-steel mounted on heavy-duty, tapered roller bearings for smoother operation. Their housings are made of precision-machined cast iron to ensure accurate, permanent alignment of the gears for superior performance. Double-bearing input support extends horsepower capacity and increases durability.
Right 90 spiral-bevel gear drives are designed for high efficiency, quiet operation, and long service life. Housings are made of lightweight aluminum alloy. Performance that’s reliable, efficient, and as noise-free as possible Input and output shaft flanges simplify mounting and installation Can be used to either reduce or increase speed Single and double-projecting output shafts for application flexibility Ground alloy steel shafts are mounted on precision ball bearings for smooth operation Pre-lubrication designed to last for the life of the drive improves performance and reduces maintenance.
Bevel gear drives feature compact, rugged construction and precision-forged, spiral-tooth bevel gears, making them ideal for industrial applications where low-speed/ high-torque drives are required. Spiral-tooth bevel gears have teeth that are made from precision-forged alloy steel for maximum strength, as well as case hardened for increased durability. Input and output shafts are constructed from ground and polished heat-treated alloy steel to further enhance the overall toughness of these drives. Precision-machined, one-piece, quality cast-iron housings mean less maintenance and greater reliability. Double-lip, garter-spring-type oil seals are use to retain lubricants and block foreign-matter contamination for extended life. All drives are furnished with keys for projecting shafts to assure quick installation.

 

Shipment and Packing Pictures 
Shipping:
1. CZPT freight: seaport to seaport, price terms CIF, FOB, EXW, CFR etc.
2. Air freight: airport to airport, price terms EXW, CRF etc.
3. Air courier: DHL, FEDEX, UPS, TNT door to door shipment, price terms DDU, CPT etc.
Packing: 
16567X3, registered Capital 500000CNY) is a leading manufacturer and supplier of Screw Jacks (Mechanical Actuators), Bevel Gearboxes, Lifting Systems, Electric Linear Actuators, Gearmotors and Speed Reducers, Others Linear Motion and Power Transmission Products in China. We are located in Chang An, Xihu (West Lake) Dis. guan, Guang dong in China. We are an audited professional manufacturer and supplier by SGS (Serial NO.: QIP-ASI192186) and BV (Serial NO.: MIC-ASR257162) organizations. We have a strict quality system, with senior engineers, experienced skilled workers and practiced sales teams, and consistently provide the customers with the best engineered solution for precision linear actuation, power transmission and mechanical jacking systems. CZPT Industries guarantees quality, reliability, performance and value for today’s demanding industrial applications.

Company Advantages
* One of the biggest orders with 1750 units screw lift jacks.
* Standard products with 2D Drawings(DXF, DWG, PDF) and 3D CAD Model(STEP).
* 100% quality assured with double quality inspections. Original Inspection Reports, Operation Manual, and Book Catalogue are put into the packages.
* 100% safety transportation with strong standard export plywood cases materials (free fumigation).
* International standard materials for all standard products.
* Custom design available, OEM service available, Free engineering advice and Customer label available.

Products List
* Manual Screw Jacks
* Electric Screw Jacks
* Screw Jacks Series:

Cubic Screw Jack JTC Series, Machine Screw Jack JTW Series, Trapezoidal Screw Jack JT Series, Worm Screw Jack JTM Series, Stainless Steel Screw Jack JSS Series, Through Hole Screw Jack JTH Series, Ball Screw Jack JTB Series, Cubic Ball Screw Jack JTD Series, Bevel Gear Screw Jack JTS Series and JTG Series, and Electric Cylinder JTE Series.
* Bevel Gearboxes Series:
Cubic Bevel Gearbox JTP Series, Hollow Shaft Gearbox JTPH Series, Input Flange Gearbox JTPF Series, Input Flange and Hollow shaft Gearbox JTPG Series, Stainless Steel Gearbox JTP Series, Aluminum Gearbox JTA Series, and Bevel Gearboxes JT Series.
* Screw Jack Lifting Systems and Accessories:
2jacks lifting system, 3jacks lifting system, 4jacks lifting system, 6jacks lifting system, 8jacks lifting system……14jacks lifting system. Lifting systems accessories cover ac, dc motors, geared motors, servo motors, stepper motors, handwheels, couplings, universal joints, telescopic universal joints, connecting shafts, cardan shafts, limit switches, proximity switches, safety nut, travel nut, rod ends, stop nuts, pillow block bearings, flange blocks, motor flange nema or iec, encoder, potentiometer, frequency converter, position indicators, trunnion plate, and trunnion mounting brackets.
* Electric Linear Actuators Series:
Electro Mechanical Actuators LA Series, Electro Mechanical Actuators LAP Series.
* Gear Reducers Series:
Helical Gear Reducers R Series, Helical Bevel Gear Reducers K Series, Parallel Shaft Helical Gear Reducers F Series, Helical Worm Gear Reducers S Series, Helical Gear Motor GMH/GMV Series, and Worm Gear Reducers NMRV Series.

Customers Distribution Countries
* American Countries: United States, Mexico, Canada, Chile, Argentina, Xihu (West Lake) Dis.via, Brazil, Colombia, Guatemala, Honduras, Panama, Peru.
* European Countries: Germany, France, United Kingdom, Italy, Spain, Poland, Romania, Netherlands, Belgium, Greece, Czech Republic, Portugal, Sweden, Hungary, Austria, Switzerland, Bulgaria, Denmark, Finland, Slovakia, Norway, Ireland, Georgia, Slovenia.
* Asian Countries: Malaysia, Indonesia, Singapore, Philippines, Vietnam, Thailand, India, Israel, Cambodia, Myanmar, Sri Lanka, Maldives, Pakistan, Iran, Turkey, Jordan, Saudi Arabia, Yemen, Oman, United Arab Emirates, Qatar, Georgia, Armenia.
* Oceanian Countries: Australia, New Zealand.
* African Countries: Egypt, Ethiopia, Nigeria, South Africa, Zambia, Mozambique.

bevel gearbox

Challenges of Using Bevel Gearboxes

While bevel gearboxes offer various benefits, there are certain challenges that can arise when using them:

  • Lubrication: Proper lubrication is essential to reduce friction, wear, and heat generation in bevel gearboxes. However, ensuring effective lubrication in the meshing bevel gears can be challenging due to their complex geometry and the potential for oil pooling or inadequate coverage.
  • Noise and Vibration: Bevel gearboxes can produce noise and vibration during operation, especially at higher speeds. The interaction of the gear teeth can lead to noise generation, which may require additional measures such as sound insulation or vibration dampening to mitigate.
  • Alignment: Precise alignment of the bevel gears is crucial to ensure smooth and efficient power transmission. Misalignment can lead to increased wear, reduced efficiency, and even gear tooth failure. Achieving proper alignment can be more complex in bevel gearboxes compared to other gearbox types.
  • Maintenance: Bevel gearboxes may require more frequent maintenance compared to other gear systems. Regular inspections, lubrication checks, and gear tooth profile monitoring are necessary to detect and address any issues before they escalate.
  • Space Constraints: The design of bevel gearboxes can be bulky, especially when used in applications that require a high gear ratio. This can pose challenges in situations where space is limited.
  • Heat Dissipation: High-speed or heavy-duty applications can generate significant heat in bevel gearboxes. Adequate heat dissipation mechanisms, such as cooling fins or lubrication cooling, may be required to prevent overheating and premature failure.

Engineers and manufacturers need to carefully address these challenges to ensure the reliable and effective use of bevel gearboxes in various applications.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Bottle Capping, Food Processing Equipment
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Right Angle Drive
Hardness: Hardened Tooth Surface
Installation: Horizontal bevel gearbox

Handling High Torque and Speed Requirements in Bevel Gearboxes

Bevel gearboxes are versatile mechanical components capable of handling a wide range of torque and speed requirements, making them suitable for various industrial applications.

The ability of bevel gearboxes to handle high torque and speed requirements depends on several factors:

  • Gear Material: The choice of gear material greatly influences the torque and speed capacity of the bevel gearbox. High-strength materials like alloy steel or hardened steel are often used to withstand higher loads and speeds.
  • Design and Tooth Profile: The design of the bevel gears, including the tooth profile and size, plays a significant role in determining their load-bearing capacity and efficiency. Precisely engineered tooth profiles ensure smooth and efficient power transmission.
  • Lubrication and Cooling: Proper lubrication and cooling mechanisms are essential to manage heat generated during high-speed and high-torque operations. Adequate lubrication reduces friction and wear, enhancing the gearbox’s overall performance and longevity.
  • Bearing Selection: High-quality bearings that can handle both radial and axial loads are critical in supporting the rotational motion and absorbing forces generated by high torque and speed.
  • Alignment and Installation: Accurate alignment and installation of the bevel gearbox are vital to prevent misalignment-related issues that can lead to premature failure under high loads.

Bevel gearboxes are commonly used in applications where both high torque and speed are required, such as heavy machinery, vehicles, industrial equipment, and more. Proper engineering, material selection, and maintenance practices contribute to the ability of bevel gearboxes to efficiently handle the demands of various high-performance scenarios.

Type and Vertical Type

Step: Single-Step
Customization:
Available

|

Customized Request

bevel gearbox

Types of Bevel Gearboxes and Their Classification

Bevel gearboxes come in various types, each designed for specific applications and requirements. They are classified based on factors such as gear arrangement, shaft orientation, and usage. Some common types of bevel gearboxes include:

  • Straight Bevel Gearboxes: These gearboxes use straight bevel gears and are suitable for transmitting motion between intersecting shafts at a 90-degree angle.
  • Spiral Bevel Gearboxes: These gearboxes use spiral bevel gears and are employed when the intersecting shafts are at angles other than 90 degrees. They offer smoother operation and higher load capacity.
  • Skew Bevel Gearboxes: In skew bevel gearboxes, the axes of the input and output shafts are not parallel or intersecting. These gearboxes are used in applications where non-parallel and non-intersecting shafts need to be connected.
  • Angular Bevel Gearboxes: Angular bevel gearboxes are designed to connect shafts at a specific angle, often used in applications where the required shaft angle is different from standard bevel gear configurations.

The classification of bevel gearboxes is based on the arrangement and orientation of the gear teeth and shafts. Manufacturers offer a variety of designs to accommodate different industrial needs and ensure efficient motion transmission at various angles.

China Standard Agriculture Machinery Gear Box Agri Farm Tractor Rotary Mowers Bevel Digger Fertilizer Spreader Right Angle Drive Shaft Bevel Pto Agriculture Gearboxes   with Best Sales China Standard Agriculture Machinery Gear Box Agri Farm Tractor Rotary Mowers Bevel Digger Fertilizer Spreader Right Angle Drive Shaft Bevel Pto Agriculture Gearboxes   with Best Sales
editor by CX 2023-08-30

China supplier Machinery Marine CZPT Wooden OEM China Motor Gearbox with Good quality

Product Description

Product Description

Machinery Marine CZPT Wooden oem China motor gearbox

 

 

Company Profile

 

Our Advantages

 

Exhibition

 

Packaging & Shipping

FAQ

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Four-Step
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

A Mathematical Model of a Cycloid Gearbox

Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.

Basic design principles

cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.

Low friction

Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.

Compact

Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.

High reduction ratios

Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.helical gearbox

Reducing amplitude of the vibration

Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.

Robust against shock loads

Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.helical gearbox

Inertial effects

Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
China supplier Machinery Marine CZPT Wooden OEM China Motor Gearbox   with Good quality China supplier Machinery Marine CZPT Wooden OEM China Motor Gearbox   with Good quality
editor by CX 2023-04-28